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Quaternion-Michelson Descriptor for
Color Image Classification

Rushi Lan and Yicong Zhou, Senior Member, IEEE

Abstract— In this paper, we develop a simple yet power-
ful framework called quaternion-Michelson descriptor (QMD)
to extract local features for color image classification. Unlike
traditional local descriptors extracted directly from the original
(raw) image space, QMD is derived from the Michelson contrast
law and the quaternionic representation (QR) of color images. The
Michelson contrast is a stable measurement of image contents
from the viewpoint of human perception, while QR is able to
handle all the color information of the image holisticly and to
preserve the interactions among different color channels. In this
way, QMD integrates both the merits of Michelson contrast
and QR. Based on the QMD framework, we further propose two
novel quaternionic Michelson contrast binary pattern descriptors
from different perspectives. Experiments and comparisons on
different color image classification databases demonstrate that
the proposed framework and descriptors outperform several
state-of-the-art methods.

Index Terms— Color image classification, local descriptor,
quaternion, Michelson contrast, quaternionic representa-
tion (QR).

I. INTRODUCTION

IMAGE classification aims to assign one or multiple labels
to a given image according to its content. It is a longstand-

ing research topic in the fields of computer vision and pattern
recognition for its numerous applications. A conventional
image classification system is usually composed of two crucial
components, i.e. image representation and feature matching.
The objective of the first component is to extract discriminative
and robust characteristics to represent the images. Based on
the derived features, feature matching measures the similarity
among images and then assigns the labels accordingly.

As a key role in the image classification system, image
representation is a challenging task. The major reason lies in
that the images, captured from the real complex environments,
usually suffer from lots of unwanted variations, including
occlusions, background and illumination changes, and dif-
ferent poses. It is even difficult for humans to differentiate
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images that belong to the same class. A promising image
representation algorithm should not only reveal the essential
and discriminative characteristics of the image but also be
robust to all kinds of variations.

A. Related Work

The essential objective of image representation is to find an
appropriate way to describe the relations among pixels in an
image or a local region. A large number of efforts have been
paid to image representation, and plenty of image descriptors
have been proposed so far. Based on the portion of image
contents used for image representation, the existing image
descriptors can be generally classified into two categories:
global descriptors and local descriptors. The global descriptors
take the whole image content into account to obtain a image
representation. Although these descriptors have performed
well in several applications, they are heavily dependent on
the segmentation results and quite sensitive to background
variations. In this work, we focus on local descriptors.

A large number of local descriptors have been proposed
from various perspectives. In contrast to global descriptors,
local descriptors are derived from local regions such that
they capture the micro-structure characteristics of the image.
Representative local descriptors, such as scale-invariant feature
transform (SIFT) [1], affine-SIFT (ASIFT) [2], speeded up
robust features (SURF) [3], and local binary pattern (LBP) [4],
have achieved great success in face recognition, texture
classification, and image retrieval. In order to further improve
the discriminative capacity of local descriptors, several
supplementary properties of the image have been taken into
account. Because gradient information reveals the change rate
of the local color distribution in an image, it has been applied
to design local descriptors. The histograms of oriented gradi-
ent (HOG) descriptor [5] is an important image representation
using the gradient feature. Following this idea, many gradient-
based local descriptors have been proposed [6], [7]. Similar to
the gradient, image edges have also been introduced to derive
local descriptors. The local edge histogram descriptor (EDH),
which is the statistics of different edge types, was designed
for image matching [8], [9]. The edge feature is also
coupled with LBP to derive local maximum edge binary
patterns for image retrieval and object tracking [10]. Similarly,
Satpathy et al. developed the discriminative robust local binary
pattern (DRLBP) and ternary pattern (DRLTP) to apply the
edge and texture information for object recognition [11].
Unlike the aforementioned strategies, several researchers
recently developed local descriptors applying the human
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perception principle in the extracting procedure. For example,
several Weber local descriptors (WLDs) have been proposed
following the Weber’s law [12] that is a special contrast
measurement of the image content to reflect the local
characteristics. They have improved performance in various
applications [13]–[16].

Because the color image consists of different color channels,
a common way to obtain the color image representation is
to extract the aforementioned global/local descriptors from
each color channel individually, and then concatenate them
together to form a feature vector. However, this way neglects
the interaction among the color channels. To overcome this
problem, researchers develop the descriptors using the quater-
nionic representation (QR) of color images. QR is a simple and
elegant representation that encodes all the color components of
a color pixel into a quaternion [17]. It possesses several attrac-
tive merits for color image processing, such as holistically
processing all color channels [18], [19], having relatively lower
computation complexity compared with other vector represen-
tation algorithms [20], and achieving the vector cross corre-
lation [21], etc. Due to these advantages, several quaternionic
descriptors have been proposed, including the quaternionic
Zernike moment descriptors [22], [23], quaternionic Fourier-
Mellin moment [24] and its orthogonal version [25], geometric
Fourier descriptor [26], hypercomplex polar Fourier descrip-
tor [27], quaternion moment descriptors [28], and quaternion
pseudo-Zernike moment [25], etc. These descriptors are exten-
sions of the corresponding complex moments and are global
representations of the color image. They suffer from the same
problem as the global descriptors. Very little attention has
been paid on extracting the local descriptors based on QR.
In our previous work, we extended LBP to the quaternion
domain, and proposed the quaternionic LBP (QLBP) [29]
and quaternionic local ranking binary pattern (QLRBP) [30].
QLBP first performs a Clifford translation to the QR matrix,
and then conducts the traditional LBP on the phase image of
the transformed result. QLRBP improves QLBP by bringing
ranking concept to the quaternion domain and conducting
LBP to a weighted L1 phase. These two descroptors take
the advantages of both QR and LBP, and achieve satisfactory
performance for different applications.

B. Our Main Contributions

In this paper, we propose a novel framework called
quaternion-Michelson descriptor (QMD) for color image
classification. QMD derives the local descriptors of color
images in the quaternion domain using the Michelson contrast.
Compared with the Weber’s law, the Michelson contrast [31]
is a more stable measurement of the human perception of
the image content [32]. The QR-based Michelson contrast
takes relations among different color channels into account
to describe the the perception of color images. Integrating
the QR and Michelson contrast, QMD combines both of
their advantages to provide a discriminative representation
of the color image. Using the proposed QMD framework, as
examples, we develop two quaternionic Michelson contrast
binary pattern (QMCBP) descriptors. They extract the

Michelson contrast of color images in the quaternion domain
from different perspectives. A number of experiments are
conducted to evaluate the proposed descriptors using different
applications, and comparison results validate their effective-
ness. Our main contributions are summarized as follows:

• We propose a simple yet very powerful Quaternion-
Michelson Descriptor (QMD) framework for color image
classification. To the best of our knowledge, this is the
first time to derive local descriptors of color images
using the Michelson contrast in the quaternion domain.
QMD benefits both advantages of Michelson contrast
and QR.

• Based on the proposed QMD framework, we develop
two novel quaternionic Michelson contrast binary pat-
tern (QMCBP) descriptors as examples. They extract
the Michelson contrast of color images from different
perspectives.

• Extensive experiments are carried out to evaluate the
QMCBP performance for different color image classi-
fication applications. The comparison results show that
the proposed QMCBPs outperform several state-of-the-
art local descriptors.

The rest of this paper is organized as follows: Section II
presents related preliminary knowledge. Section III describes
the proposed QMD framework in detail. Section IV presents
two novel QMCBP descriptors using the QMD framework.
Section V evaluates the proposed descriptors for different
color image classification applications. Section VI draws a
conclusion.

II. PRELIMINARIES

As preliminary knowledge, this section briefly presents
the Michelson contrast, quaternion algebra, and quaternionic
representation (QR).

A. Michelson Contrast

Image contrast measures the luminant difference between
a target and its surroundings, and it is considered as a
fundamental perceptual attribute of an image. The Michelson
contrast is a bounded and stable measurement of the image.
Suppose � is a local region in an image. The Michelson
contrast of � is defined as [31]:

ξ� = Imax − Imin

Imax + Imin
, (1)

where Imax and Imin represent the maximum and minimum
values within region � respectively. The result of ξ� depends
on the values of Imax and Imin as follows:

ξ� =
⎧⎨
⎩

1, if Imax > Imin = 0;
(0, 1), if Imax > Imin > 0;
0, if Imax = Imin.

(2)

We set ξ� = 0 if Imax = Imin = 0. Eqs. (1)-(2) indicate
that ξ� is a relative contrast measurement of � rather than
the absolute contrast like Imax − Imin. For different regions,
the normalized coefficient Imax + Imin will differ. As a result,
ξ� contains more comprehensive local characteristics in con-
trast with Imax − Imin. ξ� is an optimal contrast measurement
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of � in the case that the bright and dark characteristics are
equally presented [33], [34].

B. Quaternion Algebra

Mathematically, quaternion is an associative but not commu-
tative algebra over �, which was first developed by Hamilton
in 1843 [35]. The quaternion number system can be presented
as follows:

H = {q0 + iq1 + jq2 + kq3 | qn ∈ �, n = 0, 1, 2, 3}, (3)

where i, j and k are the basic complex operators, and they
satisfy the following relations:

i2 = j2 = k2 = i jk = −1, (4)

i j = − j i = k, jk = −k j = i, ki = −ik = j. (5)

For a quaternion q̇ = q0 + iq1 + jq2 + kq3, q0 is called
the real part of q̇, while iq1 + jq2 + kq3 is its imaginary
part. If q0 = 0, q̇ becomes a pure quaternion. The conjugate,
modulus, and inverse operations of q̇ are defined as follows
respectively:

q̇∗ = q0 − (iq1 + jq2 + kq3), (6)

|q̇| =
√

q2
0 + q2

1 + q2
2 + q2

3 , (7)

q̇−1 = q̇∗

|q̇|2 . (8)

Except for the algebraic form in Eq. (3), q̇ can also be
represented in the polar form as follows:

q̇ = |q̇|eżθ = |q̇|(cos θ + ż sin θ), (9)

where ż = iq1+ j q2+kq3√
q2

1+q2
2 +q2

3

and θ = arctan

√
q2

1+q2
2+q2

3

q0
. ż and θ

are known as the eigenaxis and phase of q̇ respectively.
A four quadrant arctangent (atan2) is used to calculate θ .
In the following, we exploit θ(·) as an operator to calculate
the phase of a quaternion.

One important property of the quaternion algebra is the
Clifford translation of quaternion (CTQ) [36]. Let ṗ be a unit
quaternion. The right Clifford translation of q̇ , denoted by
CTQr (q̇, ṗ), is defined as:

CTQr (q̇, ṗ) = q̇ ṗ. (10)

Similarly, we can obtain the left Clifford translation of q̇ as
CTQl(q̇, ṗ) = ṗq̇. Note that the CTQ of two pure quaternions
is not a pure quaternion in general. CTQr (q̇, ṗ) �= CTQl(q̇, ṗ)
but their phases are identical. The phase of the CTQ result
measures the similarity between q̇ and ṗ, and it has been
applied to derived the QLBP [29] and QLRBP descriptors [30].
ṗ is called reference quaternion of q̇ in the CTQ transform.

C. Quaternion Representation (QR)

To handle the color image in the quaternion domain, the
first step is to represent the image by quaternions. The color
image is usually described in an RGB color space that is a 3D
space, while the quaternion is a 4D number system. To deal
with this mismatch between the color space and the quaternion

Fig. 1. A schematic picture of Quaternion-Michelson descriptor (QMD).

domain, the imaginary part of a quaternion is used to represent
a color pixel [18]:

Ḟ(x, y) = i R(x, y) + j G(x, y) + k B(x, y), (11)

where Ḟ(x, y) is QR of the color pixel, and R(x, y), G(x, y),
and B(x, y) are the red, green, and blue components of a color
pixel respectively.

III. QUATERNION-MICHELSON DESCRIPTOR FRAMEWORK

This section introduces the proposed Quaternion-Michelson
Descriptor (QMD) framework in detail. The fundamental of
QMD is to extract the Michelson contrast of color images
in the quaternion domain. The QR-based Michelson contrast
is a novel perception of color images. It simultaneously
describes the local contrast and considers the relations among
different color components. The features, extracted from this
new perception, are expected to contain more informative and
discriminative characteristics of color images. Fig. 1 shows the
framework of QMD. For a given color image, QMD includes
three components, i.e., quaternionic representation (QR),
Michelson contrast extraction, and pattern encoding.

A. Quaternionic Representation (QR)

Unlike traditional color image representation methods,
QR encodes all color channels of the image using a quaternion
in Eq. (11). Ḟ(x, y) gives a one-to-one mapping between
the quaternion domain and RGB color space. Therefore,
the aforementioned quaternionic properties and operators
(e.g. modulus, phase, rotation, and CTQ) can be used to
process the color image directly. Any operation applied to
Ḟ(x, y) will effect all color channels at the same time. These
operations, on the other hand, bring novel perspectives to
describe the color image.

B. Michelson Contrast Extraction

This procedure aims to search a stable and discrimina-
tive contrast measurement of the image content. In Eq. (1),
Imax − Imin captures the largest variation among all pixel pairs
in a local region, and it is bounded by normalization with
Imax+Imin. Moreover, QMD extracts this contrast based on QR
such that all color information is considered, and the obtained
results contain comprehensive features of the original image.

C. Pattern Encoding

Several descriptors can be extracted from the quaternionic
Michelson contrast of an image and exploited as image
features. For instance, we can directly extract the dense
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local histogram from the Michelson contrast for image
classification. Owing to the notable success of image
encoding algorithms, we further perform a pattern encoding
operation to the quaternionic Michelson contrast of an image
to derive local descriptors in this work. Consequently, the
obtained features contain sufficient image characteristics and
provide improved discriminative capacity.

Following the QMD framework, we will propose a quater-
nionic Michelson contrast binary pattern (QMCBP) in the next
section.

IV. QUATERNIONIC MICHELSON

CONTRAST BINARY PATTERN

In this section, we first introduce two methods to extract
the Michelson contrast of the image in the quaternion domain,
present the pattern encoding procedure to derive QMCBP, and
finally provide several discussions of QMCBP.

A. Michelson Contrast Extraction in Quaternion Domain

The key step of the proposed descriptor is to extract the
Michelson contrast in the quaternion domain. Let Ṡ = { İn|n =
1, 2, · · · , N} be a small region in Ḟ(x, y), İn is the QR of the
corresponding pixel, and N denotes the pixel number in Ṡ.

Eq. (1) indicates that we need to find the maximum and
minimum within Ṡ. That is to say, we need to determine a
criterion to order the QR elements in Ṡ. Suppose f is an
ordering mapping of Ṡ as follows:

f (Ṡ) = { İtN |tn ∈ {1, · · · , N}, İt1 ≤ İt2 ≤ · · · ≤ İtN }, (12)

where ≤ denotes the ordering relationship between two quater-
nions following the given criterion.

It is easy to design such a function f for real numbers.
However, to the best of our knowledge, there is no straightfor-
ward way to order two quaternions directly. To overcome this
obstacle, an intuitive approach is to transform the quaternions
into the real domain before ordering. One simple way is to
order the quaternions according to their moduli. From the
definition of a quaternion, this is equivalent to the L2-norm of
the vector representation of the color image. The relationships
between color channels have not been fully considered.

Our previous work has demonstrated that the phase of the
CTQ-ed quaternion reveals the relations among different color
channels [29]. CTQ is a simple transform of a quaternion, and
the phase of the CTQ result can be applied to measure the
similarity of two quaternions. In this work, we apply CTQ to
order Ṡ.

Suppose ṗ is a unit quaternion, and Ṡ ṗ is the CTQ result
of Ṡ. Based on the definition of CTQ in Eq. (10), we can
achieve:

Ṡ ṗ = { İn ṗ|n = 1, 2, · · · , N}. (13)

The right Clifford translation is used here. Note that, similar
ordering results can be obtained using left Clifford translation
to Ṡ. Next, we compute the phase of each element in Ṡ ṗ as
follows:

� = {φn |φn = θ( İn ṗ), n = 1, 2, · · · , N}. (14)

Note that we will obtain the same � applying the left Clifford
translation. As aforementioned, φn describes the similarity
between İn and ṗ. Now, � can be sorted in an ascending
or descending order because φn ∈ [0, π]. Denote the sorted
phase array by �′, which can be presented by:

�′ = {φtn |φt1 ≤ φt2 ≤ · · · ≤ φtN , tn ∈ {1, 2, · · · , N}}, (15)

where tn is the element index in Ṡ. Based on �′, we propose
two types of Michelson contrast in the quaternion domain as
follows.

1) Quaternionic Michelson Contrast Extraction: Once tn is
available, we can order the elements in Ṡ as follows:

Ṡ′ = { İtn |tn ∈ {1, 2, · · · , N}, φt1 ≤ φt2 ≤ · · · ≤ φtN }. (16)

İt1 is considered as the minimum in Ṡ, while İtN is the maxi-
mum. İt1 and İtN have the minimal and maximum similarities
with ṗ. If we directly substitute İt1 and İtN into Eq. (1), ξ is
still a quaternion which is inconvenient for further processing.
Because the phase of a quaternion describes the relationship
between its components, the Michelson contrast of Ṡ is defined
as follows:

ξṠ = θ

(
İtN − İt1

İtN + İt1

)
. (17)

To provide a deeper insight, we analyze ξṠ with all color
components. Let ṗ = i Rt0 + j Gt0 + k Bt0, İt1 = i Rt1 + j Gt1 +
k Bt1 , and İtN = i RtN + j GtN + k BtN , where {Rt0, Gt0 , Bt0},
{Rt1, Gt1, Bt1}, and {RtN , GtN , BtN } are the corresponding
color intensities of ṗ, İt1 , and İtN , respectively. Based on the
definition of Michelson contrast, it has

İtN − İt1

İtN + İt1

= i�R + j�G + k�B

i�R + j�G + k�B
, (18)

where �R = RtN − Rt1 , �G = GtN − Gt1 , �B = BtN − Bt1 ,
�R = RtN + Rt1 , �G = GtN +Gt1 , and �B = BtN + Bt1 . Note
that İtN and İt1 are two most dissimilar pixels by taking ṗ
as the reference quaternion. �R , �G , and �B represent
the differences of corresponding color components between
these two color pixels. �R , �G , and �B measure their
total intensities. Denote {�R,�G ,�B} and {�R,�G ,�B} by
� and �. Substituting Eq. (18) into Eq. (17) yields

ξṠ = arctan√
(�G�B −�B�G)2+(�B�R −�R�B)2+(�R�G −�G�R)2

(�R�R + �G�G + �B�B)
(19)

We can observe that ξṠ applies the interactions between
� and � to describe the local contrast. If � is similar to �,
the numerator of ξṠ will be small, and the denominator will
be large because it is analogous to the inner product of two
vectors. ξṠ will be a small value in this situation. Otherwise,
ξṠ will be large. Compared with color intensities, � and � are
simple features of the local region from different perspectives,
and their combination in Eq. (19) provides a more informative
view of the image content. Considering another reference
quaternion ṗ in CTQ, we may obtain another Michelson
contrast result for feature extraction.
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Fig. 2. Distributions of different QR-based Michelson contrasts. (a)-(c) are the distribution results of quaternionic Michelson contrast derived by using i , j ,
and k in CTQ respectively, and (d)-(f) are corresponding results of phase-based Michelson contrast.

2) Phase-Based Michelson Contrast Extraction: In
Eq. (17), to derive ξṠ , we need to find { İt1, İtN } and compute
the phase. In fact, � in Eq. (14) contains discriminant
information of the original image and has been successfully
applied to derive the local descriptor [29]. Here we propose
a simplified version of ξṠ as follows:

ξ ′̇
S

= φtN − φt1

φtN + φt1
. (20)

ξ ′̇
S

actually is the result of directly performing Eq. (1) in the
phase image. φtn is a similarity measurement of İtn and ṗ,
which emphasizes a specific characteristic of the original color
image. ξ ′̇

S
here is a similarity-based contrast, and can be

considered as a higher level representation of color images.

B. Pattern Encoding

From Eqs. (17) and (20), it is not difficult to find that
ξṠ ∈ [0, π] and ξ ′̇

S
∈ [0, 1]. It is interesting to study the

distributions of proposed contrasts in natural images. To this
end, we collect an image set that consists of face, texture,
and pedestrian images, and the total number of images is
about ten thousands. As shown in Eq. (14), we apply the
phase of the CTQ result to derive the quaternionic Michelson
contrast. Three complex operators, i , j , and k, are applied
in CTQ. We use the histograms to illustrate distributions of
two proposed contrasts. The average histograms of all images
in the image set are plotted in Fig. 2, where (a)-(c) are the
distribution results of quaternionic Michelson contrast derived
by using i , j , and k in CTQ, and (d)-(f) are corresponding
results of phase-based Michelson contrast. For quaternionic
Michelson contrast, each distribution is similar to a mixture
of two Gaussian distributions. On the other hand, we can
observe that about 95% of the phase-based Michelson contrast

lie in the region [0, 0.1]. Their distributions are similar to
those distributions of luminance in natural scenes [37], namely
they are all skewed toward the low end of the range. Hence,
if we directly use the histogram of ξ ′̇

S
as the descriptors of

color images, the derived features may lack discriminative
characteristics to distinguish different images.

To address this problem, we further introduce an encoding
procedure to the proposed Michelson contrasts. Because the
well-known local binary pattern (LBP) has been proven to
be simple and effective, and has wide applications, in this
work, we implement LBP in the quaternionic Michelson
contrast image to derive a more powerful descriptor. The
uniform LBP is selected here for its excellent performance
in texture classification and face recognition. Combining the
Michelson contrast and the definition of LBP, we propose a
local descriptor called quaternionic Michelson contrast binary
pattern (QMCBP) as follows:

QMCBPP,R =
{

l
(∑P−1

n=0 δ(ξn − ξc)2n
)
, if H ≤ 2,

P(P − 1) + 2, otherwise,
(21)

where H = |δ(ξP−1 − ξc)− δ(ξ0 − ξc)| + ∑P−1
n=1 |δ(ξn − ξc) −

δ(ξn−1 − ξc)| and δ(x) =
{

1, x ≥ 0.
0, x < 0.

ξc is the center pixel of

a local region in the quaternion Michelsonic contrast of a color
image, and {ξ0, · · · , ξP−1} are surrounding ones of ξc. P is
the number of used surrounding pixels of ξc, while R is the
distance between ξn and ξc. l(·) is an indexing function that
assigns a particular index to each of the uniform patterns [4].
A histogram can be obtained from the QMCBP encoding
result and applied as the feature vector for classification.
A summary of the QMCBP descriptor extraction is presented
in Algorithm 1.
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Algorithm 1 QMCBP Feature Extraction

C. Discussion

To further clarify the significance of the proposed descriptor,
this section analyzes the invariance of QMCBP against differ-
ent types of changes, and discusses the differences between
our QMCBP method and existing related algorithms.

1) Invariance Against Types of Changes: In [38], van de
Sande et al. studied the invariance of different descriptors
against five types of changes: light intensity change, light
intensity shift, light intensity change and shift, light color
change, and light color changes and shift. As shown in Eq. (1),
the Michelson contrast involves the sum operation such that
the proposed QMCBP descriptors cannot remove the shift
changes. Note that all color channels are scaled by different
factors in light color change. This change will yield a new
Michelson contrast. As a result, the QMCBP descriptors are
sensitive to light color change. The light intensity change,
which scales all color channels by the same factor, can be
removed by the division operation in Eq. (1), and thus the
QMCBP descriptors are invariant to this change.

2) Difference From Methods Using RGB Channels Indi-
vidually: To derive descriptors for color images, a common
way is to extract the descriptors from each color channel
individually, and then concatenate them together to form a
feature vector. This strategy will ignore the interrelations
between color channels. In contrast, the proposed QMCBP is
based on QR of color images such that all color channels are
considered holistically and processed simultaneously. Hence,
QMCBP contains more color information for classification.

3) Difference From LBP: Both LBP and QMCBP include
a binary encoding procedure, but their encoding operations
are implemented on different objects. For LBP, it directly
handles the raw image intensity to derive the local differences
for encoding. On the other hand, QMCBP performs the
encoding to the image contrast in the quaternion domain. The
image contrast is a high level representation of the original
image which highlights the edge and texture characteristics of
images. This ensures that the derived descriptors to be robust
and contain more distinctive features.

4) Difference From WLD [14]: Although WLD and
QMCBP both apply the image contrast for representation,
they are based on different types of contrasts, and handle
the contrast in different manners. WLD uses the histogram
of the Weber contrast as features directly. On the other hand,

QMCBP further performs an encoding operation to the
Michelson contrast in the quaternion domain, and then extracts
the histogram of encoding results as local descriptors. The
Michelson contrast and encoding operations ensure that the
derived QMCBP features reflect the essential characteristics
of the original image.

5) Difference From QLRBP [30]: Although both QMCBP
and QLRBP use CTQ and LBP operations to derive local
descriptors, the use of Michelson contrast yields following dif-
ferences between QMCBP and QLRBP: (1) QLRBP directly
employs the weighted L1 phase as the input for the LBP
encoding, while QMCBP applies the phase to determine an
ordering relation for Michelson contrast extraction. (2) The
proposed Michelson contrasts contain more discriminative
characteristics than the weighted L1 phase. The phase used in
QLRBP is directly derived from the raw pixel intensity values.
For QMCBP, {�R,�G ,�B}, {�R,�G ,�B}, and {θt1, θtN } are
simple features of the local region such that they provide more
useful information for feature extraction. (3) QMCBP is more
apt to explore local characteristics of images than QLRBP.
In QLRBP, all pixels of the image are processed by CTQ with
one reference quaternion. This is a global transform of the
original image, and may hinder the performance of QLRBP.
The proposed QMCBP is able to overcome this limitation.
In QMCBP, all elements of {�R,�G ,�B}, {�R,�G ,�B},
and {θt1, θtN } adaptively change according to the image con-
tent. (4) QMCBP needs fewer parameters than QLRBP. The
performance of QLRBP heavily depends on finding the appro-
priate weights to calculate the phase. There are no such
parameters in QMCBP such that it is more convenient to be
used for many applications.

V. EXPERIMENTS AND RESULTS

In this section, several experiments will be carried out
to demonstrate the effectiveness of the proposed QMCBP
descriptors from different perspectives. First, we investigate
how the related parameters affect the performance of QMCBP
descriptors. Subsequently, the proposed QMCBP descriptors
are compared with several state-of-the-art methods in different
applications. Finally, a discussion about the time complexity
will be given.

A. Effects of Parameters

As aforementioned, we need to determine two types of
parameters in the implementation of the QMCBP descriptors,
namely the reference quaternions for CTQ and the encoding
parameters {P, R} in Eq. (21). It is time consuming to test
these parameters simultaneously. Alternatively, we first study
the effects of different reference quaternions by using fixed
{P, R}. Next, the effects of different settings of {P, R} will
be evaluated using fixed reference quaternions. The QMCBP
descriptor derived from the phase-based Michelson contrast is
used here.

1) Effects of Reference Quaternions: One key step in the
derivation of QMCBP is to apply reference quaternions to
determine the ordering of all elements within a local region.
Different reference quaternions will yield different ordering
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results and Michelson contrasts. QMCBP derived by a specific
reference quaternion may reveal the color characteristic of the
image from one view. To achieve a comprehensive descriptor,
we collect multi-view QMCBP features by using three refer-
ence quaternions becasue the color image is represented in a
3D space. On the other hand, the used reference quaternions
should not only have the capacity of revealing the color
distribution of the image but also be distinctive with each other.
From these perspectives, the following reference quaternions
are considered in this work:

1) It is natural to use the three basic complex operators
{i, j, k} as reference quaternions because any pure
quaternion can be represented by their linear
combination;

2) The basic complex operator considers the similarity
between the image and one color channel at one time.
To take more color information into account, we improve
the basic complex operators as follows: { i+ j√

2
, i+k√

2
, j+k√

2
};

3) Inspired by the bag-of-feature (BOF) model, we
conduct the fuzzy C-means (FCM) algorithm to the
vector representation of the original color image, and
use three obtained clusters as the reference quaternions;

4) Applying the BQMP algorithm [39], we can obtain
three quaternions from QR of the color image as
reference quaternions.

Denote these achieved reference quaternions by RQ1, RQ2,
RQ3, and RQ4, respectively. The corresponding descriptors are
represented as QMCBP1, QMCBP2, QMCBP3, and QMCBP4.
In this test, we evaluate the performance of these descriptors
by fixing {P, R} to {8, 1}. The pedestrian dataset ETHZ1 [40]
is selected here. It consists of 8580 images for 146 persons in
total, and all these images are captured in real complex envi-
ronments such that there are large variations among images
for the same person.

For each image, we extract QMCBP features using RQt ,
t = 1, · · · , 4. To visually illustrate the distributions of the
derived features, we utilize the principal components analy-
sis (PCA) method to reduce the dimension of each feature vec-
tor to 2, and plot these 2D points in a plane. We use one point
to represent each person where each point is the average value
of all samples corresponding to the same person. The results
are shown in Fig. 3, where (a)-(d) correspond to the features
derived by using RQt , t = 1, · · · , 4 respectively. It can be seen
that there exist several overlapping points concentrating in the
middle of each subfigure. The points in Figs. 3(a) and (b) are
more separable than those in Figs. 3(c) and (d). This means
that the fixed reference quaternions work better than the ones
derived by clustering schemes.

Next, we investigate the proposed QMCBP descriptors
with different reference quaternions quantitatively. From the
perspective of feature representation, the QMCBPt descriptors,
obtained from RQt , are expected to have large similarities
within the samples from the same class and small similarities

1https://urldefense.proofpoint.com/v2/url?u=https-3A_data.vision.ee.ethz.
ch_cvl_aess_dataset_&d=BQIFaQ&c=KXXihdR8fRNGFkKiMQzstu-
8MbOxd1NuZkcSBymGmgo&r=-nyP-sC4V4YnLlkugv_yknfikIJobepfWX-
TceIc3jI&m=Mmwi0LlsMnQxfviX4ledbpPavP5FE62xW3SVttIm1Po&s=
WPoLIeVb6f1yJA5kHBrpVqaZ6xVLpix-wIGDWegs9PU&e=

Fig. 3. The 2D distribution of QMCBP descriptors derived by different
reference quaternions. These results correspond to following reference quater-

nions: (a) {i, j, k}, (b) { i+ j√
2

, i+k√
2

, j+k√
2

}, (c) clustering centers derived by the

FCM algorithm, and (d) clustering centers derived by the BQMP algorithm
respectively.

TABLE I

AVERAGE SIMILARITIES OF THE QMCBP DESCRIPTORS DERIVED BY

DIFFERENT QUATERNION REFERENCES. BEST RESULTS ARE IN BOLD

between the samples from different classes. Therefore, the
similarities of the pedestrian images in the ETHZ dataset
between and within classes are calcualted to quantitatively
evaluate the performance of different QMCBPt descriptors.
We apply the following correlation coefficient ρ to measure
the similarity between two descriptors v1 and v2:

ρ(v1, v2) = 〈v1 − v̄1, v2 − v̄2〉
‖v1 − v̄1‖‖v2 − v̄2‖ , (22)

where v̄1 and v̄2 are the mean values of v1 and v2, 〈·, ·〉 denotes
the inner product between two vectors, and ‖ · ‖ represents
the l2-norm of a vector. For each QMCBPt descriptor of the
images in the database, we compute its similarities between
those of the same person and different persons respectively.
Table I illustrates the average values of similarities within the
same person and between different persons. Denote these two
similarities as �w and �b . The ratios of two similarities �w/�b

are also given. The larger values of �w/�b indicates that the
corresponding descriptors are more suitable for classification.

The results in Table I indicate that QMCBP3 obtains the
most satisfactory within-class similarity, while QMCBP4
has the worst one. The within-class similarities of
QMCBP1 and QLRBP2 are quite close. On the other hand,
considering the between-classes similarity, QMCBP4
achieves the best result, while QMCBP3 performs the worst.
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TABLE II

AVERAGE SIMILARITIES OF THE QMCBP DESCRIPTORS
DERIVED BY DIFFERENT ENCODING PARAMETERS.

BEST RESULTS ARE IN BOLD FONT

Although QMCBP3 and QMCBP4 are both based on adaptive
reference quaternions, QMCBP3 descripotrs are more similar
to each other because they gain the highest similarities for
within-class and between-classes, while QMCBP4 descriptors
acquire the opposite results. For the descriptors using fixed
reference quaternions, QMCBP2 performs slightly better
than QMCBP1 for within-class similarity, but worse in
between-classeses similarity. Considering two similarities
together, namely their ratios, the performance of QMCBP1
surpasses other descriptors. QMCBP2 is also superior to the
two descriptors derived by clustering methods. These results
indicate that the fixed reference quaternions are more suitable
for QMCBP than those derived by clustering methods. The
reason lies in that the clusters of some images usually suffer
from large illuminance variations and may be close to each
other. As a result, there will be redundant information in the
QMCBP descriptors derived by clustering methods. In the
following experiments, we select RQ1 = {i, j, k} as reference
quaternions.

2) Effects of Encoding Parameters: The encoding parame-
ters in Eq. (21) also greatly affect the performance of QMCBP
descriptors because the QMCBP descriptors derived by differ-
ent {P, R} will differ. Here, we set {P, R} to {8, 1}, {12, 1.5},
{16, 2}, and {24, 3} as in [4]. The derived QMCBP descriptors
are evaluated similarly as in previous experiment, namely
the within-class similarity �w and between-class similarities
�b are calculated as measurements. Table II illustrates the
corresponding results of different parameter pairs.

From Table II, it can be seen that QMCBP is sensitive
to the encoding parameters. The parameter pair {24, 3} obtains
the highest similarities in both situations. This indicates that
the derived descriptors lack discriminating information. The
descriptors obtained by small parameters show better perfor-
mance than those with large parameters. Considering two sim-
ilarities together, the parameter pair {8, 1} outperforms other
parameter pairs. Thus, it is used in the following experiments.

B. Kinship Verification

Local descriptors are commonly used in various face analy-
sis problems. In this experiment, we choose kinship veri-
fication [41] to evaluate the proposed descriptors. Kinship
verification aims to determine the following relations for a
given face image pair: father-son (F-S), father-daughter (F-D),
mother-son (M-S), and mother-daughter (M-D). It is a signifi-
cant and meaningful research topic to the academic study, and
has many potential applications to society.

Two standard testing sets, KinFaceW-I and KinFaceW-II
[41], [42], are selected for evaluation here. For the

Fig. 4. Examples of facial image pairs of different kinship relations in the
KinFaceW-II data set. Images from the first to the last rows corresponds to
F-S, F-D, M-S, and M-D relations respectively.

first data set, there are 156, 134, 116, and 127 pairs of facial
images for F-S, F-D, M-S, and M-D relations respectively,
while the other data set consists of 250 pairs of images for each
relation. Note that the two images of each pair in KinFaceW-I
data set are obtained from different pictures, and those images
in KinFaceW-II data set are acquired from the same picture.
Some face image pairs for each kinship relation are shown
in Fig. 4. The experiments here are carried out as follows [41],
namely the neighborhood repulsed metric learning (NRML)
algorithm is used to determine the relation between image
pairs for different local descriptors.

The proposed QMCBP descriptors are compared with the
following approaches, i.e., LBP [4], WLD [14], LCVBP [43],
SIFT [1], SURF [3], QLBP [29], and QLRBP [30] respec-
tively. For LBP and LCVBP methods, we extract the corre-
sponding features from each color channel individually, and
then concatenate the obtained descriptors together to form a
feature vector. The LCVBP, QLBP, and QLRBP schemes are
derived by considering all color information of the image to
provide a fair comparison. The QMCBP descriptors derived
from the quaternionic Michelson contrast and phase-based
Michelson conract are denoted by QMCBPq and QMCBPp .
All images of each kinship relation are equally divided into
five folds. For each fold, all image pairs are considered as
positive samples, and the same number of negative pairs are
randomly generated. A fivefold cross validation is carried out,
and the average verification result is reported. More detailed
information can be found in [41]. Table III illustrates the
verification performance of all algorithms on different subsets
of the two data sets.

For the KinFaceW-I data set, SIFT, SURF, QLRBP, and
QMCBPp achieve more satisfactory performance compared
with other methods. For F-S relation, SURF works the best
among all features, while SIFT and QLRBP obtain the highest
verification results for F-D and M-S relations. QMCBPp sur-
passes SIFT and SURF by about four percents in M-D relation.
Considering the overall performance, the results of SIFT and
QMCBPp are the same, and SURF slightly outperforms SIFT,
QLRBP, and QMCBPp.

Considering the KinFaceW-II data set, QMCBPq gains
better performance than QMCBPp for F-S, F-D, and M-S
relations. For M-D relation, QMCBPp and QLBP obtain the
identical results. The accuracies of WLD and LCVBP are
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TABLE III

VERIFICATION PERFORMANCE (PERCENT) OF DIFFERENT LOCAL
DESCRIPTORS ON DIFFERENT SUBSETS OF THE

KinFaceW-I AND KinFaceW-II DATA SETS.
BEST RESULTS ARE IN BOLD

TABLE IV

SUMMARY OF THE TEXTURE IMAGE DATA SETS

comparable for this data set, and they are better than those
of LBP. QLBP achieves more satisfactory results than LBP
and LCVBP. SIFT and SURF perform similarly here, and their
performance is worse than those of quaternion-based features.
For the average performance of all relations, QMCBPq sur-
passes all other methods by different improvements.

C. Texture Classification

The local descriptor has been proven to be a powerful repre-
sentation for the texture image. In this experiment, we evaluate
the proposed descriptors by the texture classification problem.
The proposed QMCBP descriptors will be compared with
several state-of-the-art local descriptors using following stan-
dard color texture data sets respectively: KTH-TIPS 2A [44],
KTH-TIPS [44], USPTex [45], Outex TC00013 [46], and
Vistex-864 [47]. A summary of these data sets are presented
in Table IV, including the class numbers, image numbers for
each class, and total image numbers. Fig. 5 provides several
examples, and the images on each row are ramdomly selected
from these data sets. In order to provide a fair evaluation, the
experiment setting for each data set is identical to the previous
existing schemes.

1) KTH-TIPS2-a Data Set: This data set totally contains
4395 texture images for eleven materials (such as white bread,
cork, cotton, and wool, etc). Each image is a size of 200×200.
The images in this data set are captured at nine different scales,

Fig. 5. Texture image examples from different standard datasets. The images
in the first to fifth rows are selected from KTH-TIPS 2A, KTH-TIPS, USPTex,
Outex TC00013, and Vistex-864 respectively.

TABLE V

CLASSIFICATION RESULTS (PERCENT) OF KTH-TIPS2-a DATA SET.
BEST RESULTS ARE IN BOLD

under four varying illumination directions, and three poses
respectively. Some example images are shown in the first row
of Fig. 5.

This experiment evaluates the proposed descriptors by
comparing with following approaches: LBP [4], WLD [14],
LCVBP [43], QLBP [29], QLRBP [30], SIFT [1], SURF [3],
DRLBP [11], and DRLTP [11], respectively. The experiment
is carried out as in [11] and [14]. That is, for each material,
three images are randomly chosen from the whole data set to
form the training set, and the remaining images are used as the
testing set. The classification rate on the testing set is applied
to measure the performance of each descriptor. This procedure
is repeated four times with different training and testing
sets, and the average results over four runs are reported. For
the proposed descriptors, the nearest neighbor classifier with
l1-norm is used. Table V illustrates the classification perfor-
mance of all descriptors. It can be seen that the results of
two QMCBP descriptors differ in this situation, and QMCBPp
works better than QMCBPq by 3.3%. The performance of
WLD, LCVBP and QLBP are comparable for this data set,
and their classification rates are all about 61%. The DRLTP
and SURF method surpass these methods by about two per-
centages, but their performance is worse than that of QLRBP.
The proposed two QMCBP descriptors both significantly out-
perform other descriptors.

2) KTH-TIPS Data Set: There are 10 classes of texture
images in this data set, and 81 images for each class.
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TABLE VI

COMPARISON RESULTS (PERCENT) OF KTH-TIPS DATA SET USING
DIFFERENT DESCRIPTORS. BEST RESULTS ARE IN BOLD FONT

Each image is a size of 200 × 200. Several example images
of this data set are shown in the second row of Fig. 5.
In this experiment, the proposed descriptors are compared with
the algorithms in [48], [49], LBP [4], SIFT [1], SURF [3],
WLD [14], LCVBP [43], QLBP [29], and QLRBP [30],
respectively. All approaches are evaluated by the leave-one-out
method, namely one image of the data set is used as testing
sample, while the rest 809 images form the training set every
time. The correct classification rate of 810 tests is reported
here, as illustrated in Table VI. We can find that the quaternion-
based local descriptors all outperform other algorithms for
this data set. QLBP achieves a slight improvement compared
with WLD. SURF does not work well in this data set, whose
classification rate is much smaller than those of other methods.
The classification rates of QLRBP and QMCBPp are the best
among all methods. For the proposed schemes, QMCBPp
obtains more satisfactory performance than QMCBPq , and
their results are both superior to that of QLBP.

3) USPTex Data Set: This data set consists of 191 classes of
texture images, and there are 12 images for each class. The size
of each image is 128 ×128. Several texture images are shown
in the third row of Fig. 5 as examples. In addition to LBP [4],
WLD [14], LCVBP [43], SIFT [1], SURF [3], QLBP [29],
and QLRBP [30] methods, the following methods are chosen
for comparison: average RGB, LBP+Haralick [50], MSD [51],
Multilayer CCR [52], HRF [53], Gabor EEE [54], [55], and
shortest graph [56]. The experiment here is conducted as
the same settings as in literature, namely two thirds of the
whole data set is randomly selected to form the training set,
and the rest images are the testing set. The nearest neighbor
classifier is used. The classification rate on the testing set
is used to evaluate each feature, and the average result of
ten runs is reported here. The performance of all methods
are illustrated in Table VII. It can be seen that QMCBPp
obtains the best performance for this data set, and surpasses
QMCBPq by more than three percentages. For the quaternion-
based methods, QMCBPp and QMCBPq both work better than
QLBP and QLRBP. Gabor EEE, LCVBP, and WLD obtain
higher classification results than QMCBPq , but their results
are less than that of QMCBPp.

4) Outex TC00013 Data Set: There are totally 1360 texture
images with size of 128 × 128 in this data set, where the
number of texture class is 68 and each class incudes 20 images.
Several texture images are shown in the fourth row of Fig. 5

TABLE VII

CLASSIFICATION RESULTS (PERCENT) OF DIFFERENT
DESCRIPTORS. BEST RESULTS ARE IN BOLD

as examples. For this data set, the experimental settings and the
approaches for comparison are identical to the evaluation of
the USPTex data set in Section V-C3. The classification results
of all methods are reported in Table VII. We can observe
that the performance of all test methods for this data set are
different from those for the USPTex data set. Features derived
by the shortest graph, WLD and QMCBPp obtain more sat-
isfactory performance compared with other methods. Among
the four quaternion-based descriptors, QMCBPp obtains an
improvement of about ten percentages compared with QLBP,
QLRBP, and QMCBPq , and it also outperforms other methods.

5) Vistex-864 Data Set: This data set contains 54 different
textures in total, and there are 16 images for each texture.
The size of each image is 128 × 128, and several example
images are shown in the fifth row of Fig. 5. The experiment
here is also carried out using the setting and comparison
methods of the USPTex data set in Section V-C3. Table VII
illustrates the classification results of all approaches. It can be
seen that QMCBPp achieves the most satisfactory performance
here. The method, derived by the shortest graph [56], does
not work well for this data set. WLD and QLBP obtain
similar classification results, and they slightly surpass SURF.
The performance of LCVBP and QMCBPq are better than
that of QLRBP. The two proposed QMCBP descriptors both
outperform other methods with different improvements.

D. Discussions

Except for the classification performance, the computational
complexity is also a significant perspective to evaluate a
descriptor. This subsection theoretically analyzes the compu-
tational cost of the proposed descriptors. Three representative
methods, including LBP, WLD, and SIFT are selected for
comparison. Without loss of generality, suppose the size of
a color image to be M × N . The computational complexity
of LBP, WLD, and SIFT are represented as follows [14]:

OLBP = c1 M N, (23)

OWLD = c2 M N, (24)

OSIFT ≈ c3(u1u2)(v1v2)M N, (25)
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where c1, c2, and c3 are constants for the computation
complexities of each pixel through additions, divisions, or
filtering operations for the corresponding methods. u1 and u2
in Eq. (25) are the levels of octave and the scales of each
octave respectively. v1 and v2 denote the sizes of the con-
volution masks in the derivation of SIFT. Eqs. (23)-(25)
reveal that SIFT has a larger computational complexity than
LBP and WLD.

From the derivation of QMCBP descriptors, we can see
that it mainly involves four procedures, namely calculating
the phase from the CTQ result, sorting the phase in each local
region, Michelson contrast extraction, and pattern encoding.
Except for the second procedure, the computational com-
plexity of all the rest steps will be c4 M N in total, where
c4 is a constant and has the identical meaning as previous
ones. Suppose the sorting is conducted in a local region with
size of w1 × w2 in size, and then the sorting step will take
w1w2 log(w1w2)M N computational cost. Therefore, the total
computational complexity of the QMCBP descriptor is:

OQMCBP = c4 M N + w1w2 log(w1w2)M N. (26)

Comparing Eq. (26) with Eqs. (23)-(25), we can find
that QMCBP has larger computational complexity than
LBP and WLD, but it is more efficient than SIFT.

VI. CONCLUSION

In this paper, we developed QMD as a novel framework
to extract local characteristics of color images. Compared
with traditional local descriptors, QMD derives the Michelson
contrast in the quaternion domain and hence considers both
the human perception of the image content and the interactions
among different color information. Following this framework,
we further proposed two QMCBP descriptors as examples.
Different color image classification applications were used
to validate the effectiveness of the proposed framework and
descriptors, and promising results have been achieved. In the
future, there are several valuable directions deserving further
investigation to improve the performance of the proposed
descriptors: developing other ordering strategies for Michelson
contrast extraction, extracting more robust and discriminative
features based on the Michelson contrast, and fusing different
Michelson-law-based descriptors.
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